
Action semantics in Smart Objects
Workshop Paper

Tolga Abacı
tolga.abaci@epfl.ch

http://vrlab.epfl.ch/˜ tabaci

Ján Ćıger
jan.ciger@epfl.ch

http://vrlab.epfl.ch/˜ janoc

Daniel Thalmann
École Polytechnique F́ed́erale de Lausanne

Virtual Reality Laboratory
daniel.thalmann@epfl.ch

http://vrlab.epfl.ch/˜ thalmann

Abstract
We present a method of formal description of
the action semantics in smart objects. Smart
objects were primarily used for behavioral
animation in the past. We demonstrate, how
a formally described semantics can be used
for action planning purposes by intelligent
agents trying to achieve a goal. The described
approach also reduces the complexity of com-
mon planning approaches by reducing the
amount of information the agent has to process.

Keywords: Smart objects, artificial intelli-
gence, virtual reality, planning

1. Introduction

There are significant AI and animation chal-
lenges to be overcome in contemporary virtual
reality systems. Realism and believability of vir-
tual characters plays important role in the im-
mersion of the user, but from an engineering
point of view, it has to stay simple enough to be
feasible with the available computing resources.
The only way how to achieve these two con-
tradictory goals is to employ some engineering
and mathematical tricks allowing the realistic-
enough simulation but being much simpler to

compute – e.g. inverse kinematics, simplified or
completely absent dynamics and smart objects.

Virtual reality applications often require the
virtual characters to be able to manipulate the
objects in their environment. Such interactions
can be arbitrarily complex and their accuracy re-
quirements vary as well (i.e. ranging from sim-
ple, single-shot motions to sequences of numer-
ous motions that require high accuracy). Tradi-
tional solution are pre-designed or pre-recorded
(e.g. by motion capture) animations. Another,
more general solution is to shift the responsi-
bility for the animation at least partially to the
object, leading to the smart object concept [1].

The basic animation and behavior problems
are addressed by smart objects, however there
are still major limitations. In order for the intel-
ligent agents to be able to reason about the smart
objects and the behavior they facilitate, the se-
mantics of that behavior has to be described in
a formal way. Typically, such reasoning is per-
formed by action planners, a technique common
in artificial intelligence. Planners require a for-
mal description of the virtual environment, usu-
ally in the form of logic formulas describing the
state and the actions possible in the virtual world
(e.g. STRIPS operators and predicate calculus).

What we would like to explore in this paper

1



is a natural extension of the smart objects by de-
scribing the semantics of the actions which en-
ables the use of the planners for complex inter-
actions. Embedding the high-level information
together with animation data in the smart object
allows for more efficient planning, because only
relevant operations and data are considered. An-
other advantage is that the embedding allows in-
tegration of the creation of the logic data into
the design pipeline, together with other semantic
information. This ensures that the smart object
animations and the corresponding high-level in-
formation are created at the same time and in a
consistent way.

2. Related work

There are few virtual environments supporting
interactions between virtual humans and the vir-
tual objects. Those that do usually follow a
very limited, “hardwired” approach of small set
of pre-defined animations. Nevertheless, the
functionality to introduce interaction possibili-
ties into a virtual environment is of great impor-
tance. There are a number of works in the litera-
ture that have addressed this issue. Parametrized
action representation [2] describes an action by
specifying conditions and execution steps, and
supports chaining of actions. The Improv sys-
tem [3] consists of an Animation Engine, used
for the motion generation aspects and a Behav-
ior Engine, used for describing the decision-
making process through rules.

On the behavior front, virtual human – ob-
ject interaction techniques were first specifically
addressed in the object specific reasoner (OSR)
[4]. The primary aim of this work is to bridge
the gap between high-level AI planners and the
low-level actions for objects, based on the ob-
servation that objects can be categorized with re-
spect to how they are to be manipulated. How-
ever, the OSR is different from the work pre-
sented in this paper, because the author takes a
“top-down” approach – generic actions are grad-
ually refined with the use of object taxonomies
into agent-executable actions.

Recently, Vosinakis and Panayiotopoulos
have introduced the Task Definition Language
[5], aimed at filling the gap between higher-
level decision processes and an agent’s inter-

action with the environment. This language
supports complex high-level task descriptions
through combination of parallel, sequential and
conditionally executed built-in functions.

The smart objects paradigm has been intro-
duced for interactions of virtual humans with
virtual objects [1]. It considers objects as agents
where for each object interaction features and
plans are defined. We extended this model in
the sense that we also augment the geometric
description of the objects with additional infor-
mation; our approach arranges this information
in an extended scene graph hierarchy together
with the geometry. Even though smart objects
are more flexible than other approaches when it
comes to animation and behaviors, the fact that
interaction plans are typically fixed imposes a
severe limitation from the interaction point of
view and also reduces the capability to adapt to
new situations.

To overcome the rigid constraints of pre-
defined interaction plans, the intelligent agent
has to be able to reason about the objects it has to
interact with. One of such reasoning techniques
is planning. It is one of the oldest topics in both
artificial intelligence and robotics. Planning in
robotics is usually concerned with synthesizing
collision-free motion. On the other hand, AI un-
derstands planning as a search for a sequence of
logic operators/actions that transform the initial
state of the world into the desired goal state.

One of the first published works about AI
planning is the STRIPS planner from 1971 [6].
This planner introduced the concept of opera-
tors, with preconditions and effects. The state
of the world is expressed using predicate cal-
culus. This method of describing the planning
problem is still popular and was used in many
planners - e.g. UCPOP [7], Prodigy [8]. One
of the most popular planners using the STRIPS
representation is Graphplan [9] and its many
derivatives, such as Blackbox, Sensory Graph-
plan [10], Temporal Graphplan [11] and many
others.

3. Action semantics in smart
objects

Smart objects provide not only the geometric in-
formation necessary for displaying them on the

2



screen, but also semantic information useful for
animation purposes. We store this information
in the form of sets of attributes attached to the
scene graph nodes of the object.

The attributes convey various kinds of infor-
mation – e.g. important places on or around the
object (e.g. where and how to position the hands
of the virtual character in order to grasp it), ani-
mation sequences (e.g. a door opening) and gen-
eral, non-geometric information associated with
the object (e.g. weight or material properties)
The semantic information in the smart object is
used by the virtual characters to perform actions
on/with the object, e.g. grasping, moving it, op-
erating it (e.g. a machine or an elevator).

However, this simple geometric information
does not provide enough data to the agent, if
it has to reason about the possible interactions
with the object. In order to be able to do this,
every meaningful interaction has to be described
in terms of its preconditions and its effects on
the state of the agent/object, if the action is per-
formed. Fortunately, such information can be
easily encoded using the first order predicate
calculus1. A detailed description of it and its
use to describe possible actions by an intelligent
agent can be found e.g. in [12].

In our case each possible interaction can be
formally expressed in a form of a rule (as-
suming left-to-right evaluation) shown in fig-
ure 1. The formula describes a “prepare-
push”operation, where agent X prepares itself to
move an object Y, if the given conditions are sat-
isfied in some state of the world.

∀X∀Y (∃P place(P ) ∧ at(X,P ) ∧ at(Y, P ) ∧

agent(X) ∧

pushing(X,Y )) ⇒ preparepush(X,Y )

Figure 1: Predicate calculus expression for pre-
parepush interaction

Such expression can be interpreted as describ-
ing a whole class of actions which can be ob-
tained by substituting for the variablesX,Y, P .

1To be exact, this is not completely correct – predicate
calculus does not allow expression of actions because
there is no notion of time. We are abusing the notation
a bit here.

There are two main practical issues with this ap-
proach:

1. The amount of potential interactions rules
for a realistic virtual reality scenario is
huge and would put an unreasonable bur-
den on the intelligent agent implementa-
tion. A “localized” implementation is de-
sirable, where the agent knows only about
relevant interactions, not all possible ones.
The amount of information available to the
agents has to be limited.

2. The mathematical notation used is un-
wieldy for computer processing. It is de-
sirable to have a subset which is easier to
parse and to interpret.

As mentioned above, the smart objects pro-
vide geometry-related semantic information.
Kallmann described also the idea of “interac-
tion plans” in [1]. Interaction plans are essen-
tially scripts containing the animation of the ac-
tion itself. They coordinate the animation of the
virtual character and the object to create the in-
tended result, which could be a complex anima-
tion of a virtual human pushing a crate, opening
a door, etc.

(:action preparepush
:params (?X ?Y)
:precond (and (at ?X ?P)

(at ?Y ?P)
(agent ?X)
(place ?P))

:effect (pushing ?X ?Y))

Figure 2: STRIPS version of the preparepush in-
teraction (operator)

The first issue can be easily addressed by an
extension of the smart object paradigm. In or-
der to provide the notion of locality, in addition
to the generic behaviors defined by the agent’s
author, the interactions defined in the manipu-
lated smart object will be made available to it as
well. Furthermore, the interaction plans (scripts)
contained in the smart object will be augmented
with the formal description of the interaction.

To address the second issue, we will aug-
ment the interaction plans not with the rules ex-
pressed as predicate calculus but with an equiv-
alent simpler notation instead – the STRIPS no-
tation. The interaction described in figure 1 can

3



Figure 3: Planning process with the extended
smart objects

be written also as in figure 2. This particular for-
mat is known as PDDL notation, used by many
STRIPS-like planners for the problem descrip-
tion.

The STRIPS notation allows us to describe
formally, when the interaction is possible – by
means of preconditions and what exactly will
be its effect on the state of the world. In the
STRIPS notation, interaction described in this
way is called “operator”, to signify, that it de-
scribed a whole class of possible interactions de-
pending on the substitutions for the variables.
An operator with all variables substituted (an
instantiated operator) is called “action” and de-
scribes one single interaction.

In the typical usage scenario, the instantiated
operators (actions) are matched against the cur-
rent state of the system using unification. Uni-
fication also ensures consistent substitution for
unbound variables (P in the examples), in effect
playing the role of the∃ quantification. The ex-
act value of the variable is not important, how-
ever there has to be at least one such value which
satisfies the given propositions (conditions).

The augmented smart objects can now be
used in the action planning process of the intel-
ligent agent. The outline of the process is de-
scribed in figure 3.

The agent will use the semantic information
from the smart object to supplement its own
set of operators with object-specific knowledge,
permitting it to correctly interact with it. In
essence, the agent “learns” the object-specific
information by querying the smart object at run-
time. The full set of operators is used in the
planning process, allowing the planner to sched-
ule object-specific actions in the plan. Finally,

during the execution of the plan, the object-
specific actions are mapped to the interaction
plans (scripts) stored in the smart object, exe-
cuted and the state of the system is updated ac-
cording the specified effects of the action.

4. Results

To verify the functionality of the extended smart
objects, we have implemented a test case using
our VHD++ framework (described in [13]). The
goal was for a virtual human to move a crate in
the virtual environment, while using the object-
specific knowledge to properly animate the pro-
cess.

An overview of the smart object structure is
shown in figure 4. An abbreviated smart object
definition is in appendix A. The smart object
definition consists of several parts, apart of the
transform defining the original position and at-
titude of the crate, there are several sets of at-
tributes defining various important points on and
around the smart object – e.g. proper hand posi-
tion for moving the object and initial position for
approaching it. The format is easily extensible,
in order to formally define the semantics of the
possible interactions, several new attribute sets
were introduced:

• The “properties” attribute set – defines in a
symbolic way the properties of the object.
In our case, it establishes “smallbox” as an
object and declares it as not heavy.

• The operators. Operators are defined in
separate attribute sets each, named with the
name of the operator. Each consists of

Figure 4: The “small box” smart object

4



Figure 5: Virtual human pushing a crate

three sections containing parameters, pre-
conditions and effects of the operator. For
each operator attribute set there is a corre-
sponding interaction plan/script.

In our test case, the implementation of the
“transport” operator described in the appendix A
involves a complex script using inverse kinemat-
ics to for the agent to grasp the object properly
and a walking engine to move the virtual charac-
ter and, consequently, the grasped box. Figure 5
shows a snapshot from the resulting animation.

Our action planner implementation employs a
modified version of Sensory Graphplan (SGP),
originally developed at the University of Wash-
ington. Sensory Graphplan builds upon the stan-
dard Graphplan and adds sensing actions and
conditional effects. It builds contingency plans -
plans where the initial truth value of some predi-
cate may be unknown (uncertain in the SGP ter-
minology) and the planner plans for both even-
tualities indicating which actions have to be
taken in each case (planning worlds - full de-
scription in [9]). As such, it is more suitable for
virtual reality simulations because the input lan-
guage is much more expressive compared to the
standard STRIPS-like planners.

The advantage of putting the object-specific
animation and formal semantic information into
the smart object becomes obvious when we con-
sider that in a real VR simulation the agent has
to interact with large amount of objects hav-
ing different properties and different animation
needs. With the described extension of the
smart objects, we can keep the amount of object-
specific information in the intelligent agent min-
imal – e.g. it is enough for the agent to know that
it has to perform a “transport” operation, but the

object-specific details are resolved at run-time
with the help of the smart object. In another ex-
periment, we have defined a second smart object
“big box”, which requires two virtual humans
to transport it because it is heavy. The agent
learns this property from the smart object, along
with the modified “transport” operator which re-
quires two agent to work together. Without hav-
ing to change the high-level action plan, the sys-
tem adapts to the changed conditions, resulting
in action depicted in figure 6.

5. Conclusions

Our proposed extension of the smart object con-
cept by defining a formal semantics of the pos-
sible interactions addresses the need of action
planners for object-specific information usable
in the reasoning process. Knowledge of the for-
mal semantics of the interaction allows the intel-
ligent agent to not only perform the animation
but also to reason about the consequences of its
actions. This reasoning is essential for any ac-
tion planning process.

Furthermore, such extended smart objects en-
able the intelligent agent to “learn” how to inter-
act with new, unknown objects on the fly, by ex-
ploiting the stored semantic information. It en-
ables simpler, more generic design of the agents,
which do not need to “know” about every possi-
ble object in the virtual world in advance. The
agents can be kept very generic, allowing very
good reusability and adaptability of the simula-
tion system.

Figure 6: Virtual humans moving a large crate

Finally, storing the extended semantic infor-
mation in the smart object has the advantage of
simplifying the design process as well. The op-

5



erators have to be designed at the same time as
the interaction scripts, this helps to ensure con-
sistency between the formal semantics of the ac-
tion and its real implementation.

In the future, we would like to focus on the in-
tegration of interaction semantics into the design
process of smart object. At the moment all in-
formation has to be entered manually by writing
XML code, which is error-prone. We envision a
semi-automated tool where the smart object de-
signer could create the semantic information for
the provided interaction scripts by filling a tem-
plate or having it generated automatically from
manually entered information. Ideally, the se-
mantics of the interaction should be generated
automatically from the interaction script, how-
ever this is a very difficult problem, because the
scripts can contain arbitrary code.

We have demonstrated, how smart objects
could be extended from a purely geometric and
animation technique into a valuable tool for rea-
soning of intelligent agents. The formal repre-
sentation of the interaction contained in them al-
lows the agents to meaningfully interact and cre-
ate action plans even with objects never encoun-
tered before and not anticipated by the agent
developer. The coupling between the anima-
tion and its formal semantics enables the virtual
characters to perform complex actions which are
very complex to achieve otherwise.

Acknowledgments

The work was sponsored by the Federal Office
for Science and Education in the Framework of
the EU Network of Excellence AIM@SHAPE.

References

[1] Marcelo Kallmann. Object Interaction in
Real-Time Virtual Environments. PhD the-
sis, École Polytechnique Fédérale de Lau-
sanne, 2001.

[2] Norman Badler, Rama Bindiganavale,
Juliet Bourne, Martha Palmer, Jianping
Shi, and William Schuler. A parameter-
ized action representation for virtual hu-
man agents. InEmbodied Conversational

Agents, pages 256–284, Cambridge, MA,
2000. MIT Press.

[3] Ken Perlin and Athomas Goldberg. Im-
prov: a system for scripting interactive ac-
tors in virtual worlds.Computer Graphics,
30:205–216, 1996.

[4] Libby Levison. Connecting planning and
acting via object–specific reasoning. PhD
thesis, CIS, University of Pennsylvania,
1996.

[5] Spyros Vosinakis and Themis
Panayiotopoulos. A task definition
language for virtual agents.Journal of
WSCG, 11:512–519, 2003.

[6] Richard Fikes and Nils J. Nilsson.
STRIPS: A new approach to the appli-
cation of theorem proving to problem
solving.Artificial Intelligence, 2:189–208,
1971.

[7] J. Scott Penberthy and Daniel S. Weld.
UCPOP: A sound, complete, partial-order
planner for ADL. InThird International
Conference on Knowledge Representation
and Reasoning (KR-92), Cambridge, MA,
October 1992.

[8] Manuela Veloso, Jaime Carbonell, Alicia
Perez, Daniel Borrajo, Eugene Fink, and
Jim Blythe. Integrating planning and learn-
ing: The PRODIGY architecture.Journal
of Experimental and Theoretical Artificial
Intelligence, 7(1), 1995.

[9] Avrim L. Blum and Merrick L. Furst. Fast
plannig through planning graph analysis.
Artificial Intelligence, 90:281–300, 1997.

[10] Daniel S. Weld, Corin R. Anderson, and
David E. Smith. Extending Graphplan to
handle uncertainty & sensing actions. In
Proceedings of AAAI ’98, 1998.

[11] David E. Smith and Daniel S. Weld. Tem-
poral planning with mutual exclusion rea-
soning. InIJCAI, pages 326–337, 1999.

[12] George F. Luger. Artificial Intelligence.
Addison Wesley, 4. edition, 2002.

6



[13] Michal Ponder, Tom Molet, George Pa-
pagiannakis, Nadia Magnenat-Thalmann,
and Daniel Thalmann. VHD++ devel-
opment framework: Towards extendible,
component based VR/AR simulation en-
gine featuring advanced virtual character
technologies. InComputer Graphics In-
ternational 2003, pages 96–104, 2003.

A. Smart object definition

<?xml version="1.0" encoding="iso-8859-1" ?>
<vhdHObjectProperty name = "small_box">

<hobjObjectoid name = "small_box">
<hobjMatrix for = "worldTransform">

1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 -1.20000 -3.000000 1.000000

</hobjMatrix>

<hobjGroup name = "Box01">
<hobjVisualGeometry name = "smallboxgeom">

<hobjFile>smallbox.osg</hobjFile>
</hobjVisualGeometry>

<hobjAttributeSet name = "lefthand1" annotation = "hand">
<hobjMatrix for = "transform">

0.212211 -0.085698 -0.973459 0.000000
-0.018253 -0.996321 0.083732 0.000000
-0.977053 -0.000000 -0.212995 0.000000
0.248064 1.292640 -0.505559 1.000000

</hobjMatrix>
</hobjAttributeSet>

<hobjAttributeSet name = "righthand1" annotation = "hand">
<hobjMatrix for = "transform">

-0.219345 -0.085698 0.971876 0.000000
0.018867 -0.996321 -0.083596 0.000000
0.975465 -0.000000 0.220155 0.000000
-0.206275 1.292640 -0.532656 1.000000

</hobjMatrix>
</hobjAttributeSet>

<hobjAttributeSet name = "approach1" annotation = "position">
<hobjVector for = "position">

-0.001913 0.000000 -0.907755
</hobjVector>

</hobjAttributeSet>

<hobjAttributeSet name = "operators_transport" annotation
<hobjText for = "lisp">

(:action transport
:parameters (?who ?what ?from ?to)
:precondition (and (at ?who ?from)

(at ?what ?from)
(not (= ?from ?to))
(object ?what)
(place ?to)
(agent ?who)
(or

(connected ?from ?to)
(connected ?to ?from))

(not (heavy ?what)))
:effect (and (at ?what ?to)

(at ?who ?to)
(not (at ?who ?from))
(not (at ?what ?from))))

</hobjText>
</hobjAttributeSet>

<hobjAttributeSet name = "script_transport" annotation
<hobjText for = "script">

... omitted for brevity
</hobjText>

</hobjAttributeSet>
</hobjGroup>

</hobjObjectoid>
</vhdHObjectProperty>

7


