
Non–traditional image segmentation and filtering

Ján Cı́ger, Department of Computer Graphics and Image Processing
�

Jaroslav Plaček, International Laser Center, Bratislava †

Faculty of Mathematics and Physics, Comenius University, Bratislava

Abstract

The first task of every computer vision system is separa-
ting interesting objects from the background. Contempo-
rary systems have to take into account, that the background
could be very complex, consisting of various objects and
artefacts. This poster describes a fast color–based algo-
rithm for the segmentation of human hand from the image
acquired by the CCD camera with further refinement of
object contour.

Keywords: Virtual reality, motion capture, CCD came-
ras, image segmentation, contour processing

1 Introduction

Often the gray–scale images could by used for object vi-
sion, especially in cases, when the background is of uni-
form/contrasting color (e.g. goods on the transporter). But
when an attempt to track and/or recognize human mo-
tions or gestures is made, this approach is very difficult.
Overview of some projects is at [1].

If color is available, it may be good to use it for seg-
menting human limbs from the environment, see e.g. [5].
The brute–force approach (thresholding on RGB or HSV
components) produces too much artifacts, thus it would
be very difficult to use such result for further processing
(e.g. object contour finding or pattern recognition). It is
necessary to use something smarter. We used a combina-
tion of several methods to achieve a very clean and proper
segmentation.

2 Some terms
� Normalized color

r̄ � r�
r � g � b � 1 � , ḡ � g�

r � g � b � 1 � , b̄ � b�
r � g � b � 1 �

Where r, g, b are coordinates of a point in a RGB
color space, r̄, ḡ, b̄ are coordinates in normalized
color space. This normalization helps to avoid effects
of different lighting. This was published in [2].

� Hashmap – Data structure, combination of the hash
table and a map, holding information about colors

�
janoc@woc.sk

†jarop@ilc.sk

required to mark points as part of an object. It is a
square matrix of counters.

3 Algorithm description

The presented algorithm works by comparing colors
present in a set of calibration objects (”training set”) with
colors in a captured bitmap. Colors present in objects from
the ”training set” are stored into a hashmap. Segmentation
is done by looking up the color of each pixel from the im-
age in the hashmap. Pixels, with color present there, are
treated as belonging to the object. Similar algorithm but
using color histograms, was published in [2].

The normalized color vectors are transformed to 2D
space due to reduction of the memory space required for
storage of the training data set. When determining the
presence of the color in the hashmap, its coordinates are
also transformed to mentioned 2D space. Then the com-
parison of the counter representing the occurrence of simi-
lar colors in training set with the threshold value (required
number of pixels with similar colors in the training set)
gives us the decision whether the pixel should be conside-
red as the object point.

3.1 Calibration

Calibration is done only once. It’s main purpose is to
”teach” the system, which colors are in the objects. It is
done by selecting portions of the image and storing the
colors found into the hashmap. This hashmap is subse-
quently used in the segmentation algorithm for all captured
images.

Calibration algorithm is very simple, it just fills in a
hashmap (see algorithm 1).

3.2 Segmentation

Segmentation works as described in the algorithm 2. This
algorithm is optimal, because it runs in O � n � time, where
n is number of pixels in the picture. Color lookup for each
pixel is done in O � 1 � time.

4 Contour refinement

Segmented image is suitable for contour tracing by stan-
dard algorithms, but when the image is noisy (almost al-

ways), it is desirable to smooth the result. Traditional al-
gorithms described in e.g. [3],[4], or curve fitting are slow
and very complex. Another alternative is filtering and sub–
sampling.

Input is the object contour created by standard tracing
algorithm. It is the vector of the adjacent points from the
border. The output vector must fulfill two requirements:

1. We want to have approximately equal distances be-
tween individual contour points.

2. The contour should be smooth - removing small and
unwanted discrepancies (noise) from original data.

This can be achieved by constructing the new contour
with algorithm 3.

5 Conclusions

No recognition algorithm would work properly when the
input would be corrupted somehow. Therefore the proper
segmentation is crucial for successful processing as well
as the creation of the correct contours. Segmentation algo-
rithm described there is very robust, it’s only known limi-
tation in its current implementation (with ignored green
color component) is sensitivity to yellow color, which
can interfere with segmentation. This can be fixed by
using three-dimensional hashmap instead of only two-
dimensional.

The results, we obtained, are promising for using this al-
gorithms in human hand tracking and gesture recognition
later.

Figure 1: Original scene

References

[1] http://ls7-www.cs.uni-
dortmund.de/research/gesture/vbgr-table.html. Vision
Based Hand Gesture Recognition Systems.

[2] http://www.subutai.com/asilomar94.ps.gz. A Usable
Real-Time 3D Hand Tracker.

[3] Ferko A. and Ružický E. Počı́tačová Grafika a Spra-
covanie Obrazu. Sapientia, Bratislava, 1995.

Figure 2: Segmented scene

Figure 3: Raw contour

Figure 4: Refined contour

[4] Hlaváč V. and Šonka M. Počı́tačové Viděnı́. Grada,
Praha, 1992.

[5] Gonzales R.C. and Woods R.E. Digital Image Pro-
cessing. Addison-Wesley, 1992.

Algorithm 1 Calibration
� NC – Normalized color, triplet of red, green and blue

component

� H – Hashmap

� D – dimension of the Hashmap

interactively select area
from the image

FOR each pixel in selected area DO

calculate normalized color NC
calculate hash keys u,v :

u = NC.red * D
v = NC.blue * D

H[u][v] ++;

END FOR

Algorithm 2 Segmentation
� C – pixel color (RGB triple)

� H – hashmap from calibration

� L – parameter, defines required frequency of the color
to consider it as an object color

� NC – normalized color

� D – dimension of the hashmap

FOR every pixel DO

calculate normalized color NC

calculate hash keys u,v :
u = NC.red * D
v = NC.blue * D

IF H[u][v] > L
THEN

mark point as object point
ELSE

mark point as background point

END FOR

Algorithm 3 Contour refining
� D – distance between points in the output contour

� C – output contour

store 1st point into output contour C

FOR each point DO
calculate moving average of n points
(center of gravity G of this segment)

IF | C.last() - G | > D THEN
store point into C

END FOR

