
Speculative Planning With Delegation

Tolga Abacı
tolga.abaci@epfl.ch

Ján Cı́ger
jan.ciger@epfl.ch

Daniel Thalmann
daniel.thalmann@epfl.ch

VRlab
Swiss Federal Institute of Technology (EPFL)
IN-J Ecublens, 1015 Lausanne, Switzerland

Abstract

This paper presents a novel method of collaborative
problem solving for intelligent agents in virtual environ-
ments. We describe a planner for STRIPS-like domains en-
hanced by techniques of “delegated computing”. Instead
of having one central planner with a complete information
about the world, the concept of delegation is used. In this
way, we achieve agent collaboration in a dynamic system,
where each of the agents has its own partial plan, but the
plans are implicitly coordinated towards a common goal.
We demonstrate these techniques in a virtual reality simu-
lation with virtual humans solving a logistical problem.

1. Introduction

Many researchers investigated the fields of both multi-
agent systems (mostly artificial intelligence) and collabora-
tive VR (mostly multi-user systems). An interesting prob-
lem in these domains is the use of collaborative agents for
VR applications and having them work together with the
human operator to solve a problem. Our intention in this
paper is to address the important issues of agent communi-
cation, collaboration and planning.

We present a new method of intelligent agent collabo-
ration in a virtual environment. Our approach is based on
combination of several techniques:

• STRIPS–like problem representation

• Graphplan planner (solver)

• Task delegation framework

Instead of using a centralized planning system or shared
plans, we implement agent collaboration using “delegated
computing.” This allows us to achieve meaningful agent

collaboration in a dynamic system, where none of the agents
has full knowledge of the environment (e.g. does not know
about the other agents or the complete state of the environ-
ment).

Potential applications include training (emergency re-
sponse, medical training, air traffic control, even military),
simulations and games.

2. Collaborative agents

There are several common approaches for agent control
in the systems with collaborating agents:

• Scripting. Scripting allows very detailed level of con-
trol, but is very inflexible.

• Planning. Usually centralized, tends to be inflexible
in handling unexpected situations. To mitigate this to
some extent, hierarchical planning is often used (e.g.
[3]).

• Reactive agents. Agents are not scripted, but react to
the changing environment according to the sets of rules
(e.g. described by Badler in [2]). There are few other
popular techniques, e.g. BDI logic introduced by Brat-
man [6], cognitive modeling [10] or just simple finite
state machines.

With the use of these three approaches, several difficul-
ties arise – scripting is problematic in the case of contingen-
cies (e.g. unexpected obstacles), centralized planning tends
to be complex, because it has to produce detailed plans for
every agent in the system and does not cope well with unex-
pected events. Reactive techniques perform usually well for
single agent, but the lack of a global state awareness hinders
meaningful coordination – the agents try satisfy their own
desires, but those do not have to be compatible with the
higher level goal.



Traditionally, specialized collaboration algorithms have
been quite complex. For example, shared plans [11] or
project COLLAGEN [20] require the agents to know about
each other and communicate among themselves in the pro-
cess of solving the problem. This is not always practical,
especially when the environment itself is dynamic and the
agents may appear and disappear arbitrarily at run-time –
often the case in VR applications.

However, a simpler approach is possible – a task, not
communication-oriented system. It is usually not important
who performs the task but that the task is done. This idea
appeared in blackboard systems, where the agents commu-
nicate among themselves by posting data to a shared data
store – the blackboard. Classical example of a blackboard
system is HEARSAY-II, described in [8].

More recent work uses the concept of “delegation” – ask-
ing another agent to perform a service or sub–task. This
idea appeared in [7] and more recently in [17]. The tech-
nique is described as “delegated computing.”

Delegated computing achieves agent coordination using
a facilitator, which keeps the information about the global
state of the system and brokers the information exchanges
among the agents. The coordination process itself is trans-
parent to the agents. This greatly simplifies the implemen-
tation of such system, because each agent has to be aware
only about the facilitator(s), it does not have to communi-
cate with other agents directly unless it wants to.

The basic heuristics often leading to the successful solu-
tion of the problem is to delegate everything that the agent
is unable to solve itself to the facilitator. The facilitator ar-
ranges the completion of the sub-goals by delegating the
task further to the agents capable of completing it if it is pos-
sible in the given situation (e.g. there has to be agent or set
of agents capable of solving that particular sub-problem).

The collaboration does not have to be limited only to the
autonomous agents. Human operator could also delegate
the tasks to the facilitator, which will handle the work co-
ordination. This scheme alone allows solution of simple
problems, but more sophisticated solution is necessary for
more complex objectives.

This paper proposes a new method of action planning.
The combination of planning with delegated computing en-
ables creation of a speculative planner. During the search
for the plan satisfying the goals, it is possible to “cheat”
by assuming that some action is possible (even though the
agent does not know how to perform it itself) and continue
further. While executing such plan, these actions will be
replaced by delegation to the facilitator. It means, that the
plan may be potentially not valid (not satisfying the goal,
because no agent is capable of successfully solving the del-
egated sub-goal) in runtime, but in most cases the delegation
will lead to a solution even in cases which are unsolvable by
the agent alone.

(define (operator move)
:parameters

((Agent ?who)
(Place ?from)
(Place ?to))

:preconditions
(:and (:neq ?from ?to)

(at ?who ?from))
:effect

(:and (at ?who ?to)
(:not (at ?who ?from))))

Figure 1. The “move” operator

3. Planning

Planning has two main interpretations/meanings (ac-
cording to [15]):

• In artificial intelligence, planning is usually under-
stood as a search for a sequence of logical opera-
tors/actions that transform an initial world state into
a desired goal state.

• In robotics, planning is concerned mainly with motion,
including problems such as the “piano–mover’s prob-
lem.”

Planning in artificial intelligence has a long-standing tra-
dition. One of the first works was the STRIPS planner
in 1971 [9]. STRIPS introduced the concept of operators,
which have preconditions and effects. The state of the sys-
tem is expressed by predicates. Many planners use this rep-
resentation of the problem – such as UCPOP [18], Graph-
plan [5], PRODIGY [22], etc. An example of a STRIPS
operator for moving an agent from one place to another in
UCPOP notation is given in figure 1.

The plan can be typically produced in two forms. A
total-order plan specifies exact sequence of actions leading
from the initial state to the goal (steps have to be ordered).
Partial-order plan can contain steps where the ordering be-
tween actions is not specified (e.g. Graphplan is a partial-
order planner).

There are many extensions to the basic planners, e.g.
Sensory Graphplan (adds sensing and uncertainty – [1, 24]),
Probabilistic Graphplan (modification for the probabilistic
planning – [4]), planners using durative actions (taking the
estimated duration of an action into account) and many oth-
ers.

On the other hand, robotics deals mostly with motion
planning techniques, aiming to synthesize collision-free
motions. Attempts to achieve practical planning resulted in



schemes that utilize the probabilistic roadmaps. Visibility-
based roadmaps (see [21]) employ visibility criteria to re-
duce the number of the nodes in the roadmap. On the other
hand, rapidly–exploring random trees (RRTs – [14]) gener-
ally have much higher number of nodes, but they explore
the configuration space more uniformly. These techniques
have also been applied to animation of virtual characters.
For example, [13] describes a motion planning system for
generating grasping and reaching motions.

4. Planning with delegation

We introduce the concept of delegation into a planner
using STRIPS-like problem representation. The Graphplan
planner described in [5] was adapted to use delegated ac-
tions.

Graphplan uses the notion of the planning graph which
compactly encodes the planning problem. Described in a
very simplified way, the planning graph is constructed layer
by layer. Each layer consists of preconditions (predicates)
and actions, for which the corresponding preconditions ex-
ists in it. The search is attempted whenever the current layer
contains all goal predicates and they are not mutually exclu-
sive. It is done in a backward-chaining way, going from the
goals back to the actions, using their preconditions as sub-
goals for a recursive step.

The planner has four important properties:

• Graphplan is sound, if the plan is found, it is correct

• Graphplan is complete, if the plan exists, it will find it

• Graphplan always stops, even if the solution does not
exist

• The generated plan is the shortest partial-order plan
possible.

(define (operator open_door)
:parameters

((Agent ?who)
(Door ?door))

:preconditions
(:and (not_encumbered ?who)

(at ?who ?door)
(closed ?door))

:effect
(:and (open ?door)

(:not (closed ?door))))

Figure 2. Standard “open-door” operator

We introduced delegation into Graphplan by means of
delegation operators. From the planner’s point of view, a
delegation operator is the same as a standard operator (has
parameters, preconditions and effects), except that during
the creation of the planning graph the instantiation of dele-
gation operators is tried only after all other options (no-ops
and standard operators) are exhausted. This means that an
agent delegates something only if it cannot do it itself. In
this way, we are able to avoid generation of meaningless
plans where every agent delegates all actions, even those
that they are perfectly capable of performing themselves.
Moreover, this ordering of operators ensures that if a plan
using delegated operations is not valid (does not lead to a
successful completion of the goal) then there is no valid plan
without delegation either.

(define (operator delegate_open_door)
:parameters

((Door ?door))

:preconditions
((closed ?door))

:effect
(:and (open ?door)

(:not (closed ?door))))

Figure 3. Delegated “open-door” operator

Figure 2 shows a standard “open door” operator, figure
3 shows a delegated variant of the same. The difference for
the planner is that the delegated operator is easier to apply
(has usually less preconditions) and never specifies which
agent has to perform it, because this information is deter-
mined only at runtime by the facilitator.

Plans containing delegated actions are executed by
agents in a similar way as normal (non-delegated) plans.
For each step, the preconditions are checked, action is per-
formed and the state of the simulation is updated according
to the effects of the action. The important difference be-
tween a delegated and non-delegated action lies in the way
the action’s effects are introduced into the simulation state.

For standard actions, the agent performing the operation
is also responsible for updating the state of the simulation.
However, for the delegated action, the facilitator arranges
its execution and the update of the simulation state is the
responsibility of the agent(s) finally performing it (to which
it was delegated from the facilitator). The reason for this
difference is very simple – if the delegating agent is waiting
for the effects of the delegated action in order to be able
to proceed with the next step of the plan (which has some
of the effects as preconditions), it will need to synchronize
with the agent really performing the action.



Initial conditions:
(at, martin, anywhere)
(closed, door)

Goal conditions:
(behind, martin, door)
(closed, door)

Resulting plan:
1. (move, martin, anywhere, door)

(delegate_open_door, door)
2. (approach, martin, door)
3. (walkthrough, martin, door)

4. (delegate_close_door, door)

Figure 4. Plan for traversing the door using
delegation

Figure 4 shows an example of a partial-order plan using
delegation to solve a problem of an encumbered agent (car-
rying a large crate) having to negotiate a closed door. The
actions and predicates are expressed using tuples, where the
first element is the functor describing the action and the
remaining elements are arguments. The plan was created
using the operators in table 1. Columns “add” and “del”
effects denote the predicates, which have to be added or
removed from the simulation state, when the action is ex-
ecuted. In the UCPOP notation, the “del” effects are pre-
ceded by the :not keyword.

Compared to the standard plans generated by Graphplan,
plans using delegation may not always lead to successful
completion of the goal. The planning is speculative, the
delegation operators assume, that it is possible to execute
the corresponding actions in run-time. That may or may
not be true, depending on the situation (e.g. if there are no
agents capable of performing the action).

In our context, an agent delegating an action means that
it asks the facilitator to take care of how and by whom this
action should be executed. The facilitator maintains the ca-
pabilities of the agents and uses different strategies to solve
this problem. This organization frees the delegating agent
from keeping track of this information, greatly simplifying
the process of collaboration.

The facilitator uses a process known as unification [16]
to match the declared capabilities of agents with the task be-
ing delegated. By default, all solutions are used, that means,
that all agents capable of solving the task are asked to do so
and they execute the tasks in parallel. This is not always de-
sired behavior (e.g. three agents rushing to open the door),
so it is possible to restrict the amount of desired results (e.g.

to one). In such case it is up to the facilitator to decide
which agent will receive the delegated task.

Unification also allows easy tracking of the state of the
simulation, because predicates expressing the current state
can be stored by the facilitator and queried in a simple
way. For example, agent Gino reports that the door is
open by declaring a predicate (open, door). Agent
Martin can query whether the door is open either directly
by delegating the expression (open, door) to the fa-
cilitator (returns empty substitution if the unification suc-
ceeds) or he can ask for the status of the door by delegat-
ing (?status, door), which returns in our case sub-
stitution {open/?status}. This technique is similar to
blackboards, where agents are posting information into a
shared data repository. Agents executing their plans use it
to ensure that preconditions of the actions are satisfied or to
communicate changes in their environment.

5. Results

We would like to illustrate the effectiveness of our ap-
proach by a simple example. We have constructed a virtual
environment, with two agents (virtual humans Martin and
Gino), a heavy crate and two rooms separated by a sliding
door, activated by a nearby button. The environment is 3D-
rendered in real-time, and a grid representation is used for
fast path finding and collision detection.

The architecture of our implementation is outlined in the
figure 5. The agents framework and the planner were imple-
mented using Python. Communication among the agents
(including the facilitator) is implemented using CORBA
(OmniORB). For the animation and visualization of our VR
environment we have used the VHD++ framework [19].

Figure 5. Architecture using the facilitator

In the scenario we have examined, one of the agents
needs to carry the heavy object from one of the rooms to the
next one. For this particular problem, our planning frame-
work has come up with the sequence of actions depicted in
figure 4, the plan was executed as shown in figure 6.



Figure 6. Execution of the plan



Operator Arguments Preconditions “Add” effects “Del” effects
move who, from, to (at, who, from),

(:neq, from, to)
(at, who, to) (at, who, from)

walkthrough who, door (in front, who, door),
(open, door)

(behind, who, door) (in front, who, door)

approach who, what (at, who, what) (in front, who, what) (at, who, what)
leave who, what (in front, who, what) (at, who, what) (in front, who, what)

open door who, door (not encumbered, who),
(at, who, door),
(closed, door)

(open, door) (closed, door)

close door who, door (not encumbered, who),
(at, who, door),
(open, door)

(closed, door) (open, door)

delegate open door door (closed, door) (open, door) (closed, door)
delegate close door door (open, door) (closed, door) (open, door)

Table 1. Operators for the door problem

Upon receiving the request to move from the first room
to the next one, Martin begins walking, carrying the crate.
When he reaches the door, he senses that he has met an ob-
stacle and the contingency planning is started. He delegates
a planning job to the facilitator, which in turn delegates it
to the available planning agent. It creates the plan, if one
exists, and returns it.

For the plan described above, the door must be open
for Martin to be able to pass through it and enter the other
room. This can only be accomplished by pressing the but-
ton. Since Martin is already encumbered by the object, he
cannot press the button, and he has to ask for assistance. He
delegates the action and the facilitator arranges for Gino to
execute it. Once Gino opens the door, the obstacle is re-
moved, so Martin is able to fulfill the original request. The
result is effectively the two agents collaborating to achieve
a goal.

6. Conclusions and Future Work

We presented a novel method of collaborative problem
solving with intelligent agents. The combination of the
classical STRIPS planner with delegated computing has en-
abled us to create “smart” virtual humans that are capable
of helping each other to solve problems. A simple scenario
was used to illustrate the usefulness of the method.

The generated plans are usually simpler compared to a
single plan including all agents and are also much faster to
create. This is important in a real-time VR environment.

Additionally, the indirect communication of the agents
via the facilitator makes the plans more flexible. They do
not depend on an particular agent to be available for collab-
oration, thus reducing the need for run-time re-planning.

However, there are few disadvantages, which have to be

taken into account. The facilitator could become a bottle-
neck in setups with large number of agents. This could be
addressed by multi-facilitator systems, with the associated
high complexity.

Another drawback is the fact that not every planning
problem is easily expressed as a STRIPS-like domain (for
example cases where new objects are created). However,
this is a more general problem, which is not specific to our
approach.

In the future, we plan to enhance the system with auto-
matic generation of the problem descriptions for the plan-
ner. Currently, the problems are “hard-wired” into the
agents – the agent has an a priori knowledge e.g. about
how to open the door. There are several possible approaches
for this, one is automated learning by observation [23], or
by getting the necessary data from the environment – e.g.
smart objects [12].

Another possible enhancement is to include aspect of
time into the planner. Planners using durative actions are
known already, however in case of delegated actions there
are non-trivial challenges to be addressed.

References

[1] C. R. Anderson, D. E. Smith, and D. S. Weld. Conditional
effects in Graphplan. In Proceedings of AIPS ’98, 1998.

[2] N. Badler. LiveActor: A virtual training environment with
reactive embodied agents. In Workshop on Intelligent Hu-
man Augmentation and Virtual Environments, University of
North Carolina at Chapel Hill, October 2002.

[3] J. Baxter and R. Hepplewhite. A hierarchical distributed
planning framework for simulated battlefield entities. In
PLANSIG 2000, 2000.

[4] A. Blum and J. Langford. Probabilistic planning in the
graphplan framework. In ECP, pages 319–332, 1999.



[5] A. L. Blum and M. L. Furst. Fast plannig through planning
graph analysis. Artificial Intelligence, 90:281–300, 1997.

[6] M. E. Bratman. Intention, Plans, and Practical Reason. Har-
vard University Press, Cambridge, MA, 1987.

[7] P. R. Cohen, A. J. Cheyer, M. Wang, and S. C. Baeg. An
open agent architecture. In AAAI Spring Symposium, pages
1–8, Mar 1994. OAA.

[8] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy.
The HEARSAY-II speech-understanding system: Integrat-
ing knowledge to resolve uncertainty. In ACM Computing
Surveys, volume 12 (2), pages 213–253. ACM Press, 1980.

[9] R. Fikes and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 2:189–208, 1971.

[10] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling:
Knowledge, reasoning and planning for intelligent charac-
ters. In SIGGRAPH 99, Los Angeles, CA, August 11-13
1999.

[11] B. J. Grosz and S. Kraus. The evolution of shared plans. In
A. Rao and M. Wooldridge, editors, Foundations of Rational
Agency, pages 227–262. Kluwer, Dordrecht, 1999.

[12] M. Kallmann. Object Interaction in Real-Time Virtual En-
vironments. PhD thesis, École Polytechnique Fédérale de
Lausanne, 2001.

[13] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Plan-
ning collision-free reaching motions for interactive object
manipulation and grasping. In Proceedings of Eurographics
2003, pages 313–322, Granada, Spain, 2003.

[14] S. M. LaValle. Rapidly-exploring random trees: A new tool
for path planning. Technical Report 98-11, Dept. of Com-
puter Science, Iowa State University, October 1998.

[15] S. M. LaValle. Planning Algorithms. [Online], 1999-2004.
Available at http://msl.cs.uiuc.edu/planning/.

[16] G. F. Luger. Artificial Intelligence. Addison Wesley, 4. edi-
tion, 2002.

[17] D. L. Martin, A. J. Cheyer, and D. B. Moran. The
Open Agent Architecture: A Framework for Building Dis-
tributed Software Systems. Applied Artificial Intelligence,
13(1/2):91–128, 1999.

[18] J. S. Penberthy and D. S. Weld. UCPOP: A sound, complete,
partial-order planner for ADL. In Third International Con-
ference on Knowledge Representation and Reasoning (KR-
92), Cambridge, MA, October 1992.

[19] M. Ponder, T. Molet, G. Papagiannakis, N. Magnenat-
Thalmann, and D. Thalmann. VHD++ development frame-
work: Towards extendible, component based VR/AR simu-
lation engine featuring advanced virtual character technolo-
gies. In Computer Graphics International 2003, pages 96–
104, 2003.

[20] C. Rich and C. L. Sidner. COLLAGEN: When agents col-
laborate with people. In W. L. Johnson and B. Hayes-Roth,
editors, Proceedings of the First International Conference
on Autonomous Agents (Agents’97), pages 284–291, New
York, 5–8 1997. ACM Press.

[21] T. Simon, J.-P. Laumond, and C. Nissoux. Visibility based
probabilistic roadmaps for motion planning. Advanced
Robotics Journal, 14(2), 2000.

[22] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and
J. Blythe. Integrating planning and learning: The PRODIGY
architecture. Journal of Experimental and Theoretical Arti-
ficial Intelligence, 7(1), 1995.

[23] X. Wang. Learning planning operators by observation and
practice. In Artificial Intelligence Planning Systems, pages
335–340, 1994.

[24] D. S. Weld, C. R. Anderson, and D. E. Smith. Extending
Graphplan to handle uncertainty & sensing actions. In Pro-
ceedings of AAAI ’98, 1998.


